
Eurographics Symposium on Parallel Graphics and Visualization (2010)
J. Ahrens, K. Debattista, and R. Pajarola (Editors)

Parallel View-Dependent Refinement of Compact Progressive
Meshes

E. Derzapf1, N. Menzel1 and M. Guthe1

1Graphics and Multimedia Group, FB12, Philipps-Universität Marburg, Germany

Abstract

The complexity of polygonal models still grows faster than the ability of the graphics hardware to render them
in real-time. A common way to deal with such models is to use multiple levels of detail (LODs). These can be
static with the advantage that the simplification can be performed without regarding real-time constraints and the
rendering algorithm simply chooses which LODs to render at runtime. Static LODs however suffer from sudden
mesh transitions (popping artifacts) when the levels are too different. Dynamic or view-dependent LODs solve
this problem by allowing for a continuous and smooth refinement. Unfortunately, they become computationally
too expensive when the number of vertices is high, because refinement operations have to be computed for every
vertex. In this paper, we address this problem by introducing a compact data structure for progressive meshes
optimized for parallel processing and low memory consumption on the GPU. We also present an efficient LOD
adaption algorithm resulting in an adaption time almost equal to the rendering time of the adapted mesh.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—
Curve, surface, solid, and object representations I.3.1 [Computer Graphics]: Hardware architecture—Parallel pro-
cessing

1. Introduction

To satisfy the ever growing demand for realistic renderings,
the complexity of polygonal models is constantly increas-
ing. Despite the enormous processing power of the GPU,
such models can not be rendered in real-time. To reduce
the number of triangles, existing techniques either use static
or dynamic levels of detail (LODs). Static LODs are easy
to use since simplification and rendering are decoupled, but
suffer from popping artifacts if the simplification levels are
not similar enough. In addition, the memory overhead com-
pared to an ordinary mesh is typically about 50%. Dynamic
LODs depart from this approach by encoding the simplifica-
tion operations into a continuous sequence. As a result, pop-
ping artifacts are often nearly invisible. As the LOD is view-
dependent, it uses no more polygons than necessary. Yet an-
other advantage is that back-facing polygons don’t have to
be refined, resulting in an overall reduction by a factor of
three to four compared to static LODs. Two problems are
however induced by dynamic LODs: First, the memory con-

sumption is significantly higher than for static LOD if the
operations and displacement vectors are stored in a straight-
forward way. For this reason, compressed representations
using variable length encoding were proposed. These how-
ever do not support efficient view-dependent LOD adaption.
The second problem is that the number of split- and collapse
operations which have to be processed for every view-point
change increases with the number of triangles. Existing ap-
proaches tried to compensate this problem by distributing
LOD adaption over several frames. This solution is unsatis-
fying, since the rendering performance is increasing much
faster than the CPU processing power, resulting in a grow-
ing adaption delay. Existing parallel GPU approaches only
partially solve this problem as they are either too restrictive
or the rendering is still significantly faster than the adaption.

In this paper we solve both problems discussed above by
introducing a compact representation of progressive meshes
that is specifically designed for real-time parallel adaption
on the GPU. Our two main contributions are:

c© The Eurographics Association 2010.

E. Derzapf & N. Menzel & M. Guthe / Parallel View-Dependent Refinement of Compact Progressive Meshes

• A novel random access data structure for progressive
meshes that requires less than 50% of an ordinary mesh.
• A massively parallel adaption algorithm running on the

GPU that is almost as fast as rendering the adapted mesh.
Our approach outperforms previous techniques by almost
an order of magnitude.

The remainder of this paper is structured as follows: in
section 2 we give an overview of existing techniques. In sec-
tion 3 the proposed compact data structure is explained in
detail. In the following section 4 we introduce the adaption
algorithm and memory management for real-time rendering.
Finally we evaluate our algorithm in section 5.

2. Related Work

View-dependent simplification has been an active field of
research over the last decades. In addition to the exist-
ing static LOD techniques [GH97], Hoppe introduced pro-
gressive meshes that smoothly interpolate between differ-
ent LODs [Hop96]. Depending on the view position and
distance, a sequence of split- or collapse operations is per-
formed for each vertex. The inter-dependency of split op-
erations can either be encoded explicitly [XV96] or implic-
itly [Hop97]. Hoppe later optimized the data structures for
the operations and improved the performance of the refine-
ment algorithm [Hop98]. El-Sana et al. [ESV99] prevented
fold-overs of triangles by introducing a view-dependent tree
containing modified rules for the operations. The depen-
dency also requires no additional memory, but a suitable
neighborhood data structure for the adapted mesh. In addi-
tion, the split operations cannot be stored as compactly as
with the approach of Hoppe. Pajarola and Rossignac [PR00]
introduced compressed progressive meshes, where the input
mesh is simplified in batches. A batch is created by selecting
the first 11% of non-adjacent edges from the priority queue.
All of these edge-collapses have to be performed in parallel.
This allows for a very compact coding, but view-dependent
adaption is not possible. Pajarola and DeCoro [Paj01,PD04]
developed an optimized sequential view-dependent refine-
ment algorithm. Their FastMesh is based on the half-edge
data structure and manages split-dependencies by storing a
collapse-operation for each half-edge. This however limits
the algorithm to two-manifold triangle meshes and requires
24 additional bytes per vertex of the adapted mesh.

Recently methods for interactive visualization of large
multiresolution geometric models have been modified for
parallel processing. Sander et al. [SM06] proposed an al-
gorithm that performs geomorphing on the GPU to render
a given mesh. This approach requires building hierarchi-
cal static LOD structures, a trade off between static and
view-dependent LODs. The GPU-based approach by Ji et
al. [JWLL06] generates an LOD texture atlas by resampling
the original model onto a regular remesh over a polycube
map. They use a vertex shader to displace invisible vertices
to infinity. This however has a significant impact on perfor-

mance since no vertex transformations are saved. DeCoro
and Tatarchuk [DT07] propose an octree-based vertex clus-
tering for real-time simplification on the GPU. Adaptive
simplification is supported by warping the input mesh. While
the algorithm is fast enough to generate LODs at runtime,
the visual quality is suboptimal due to the primtive vertex-
clustering. A more general approach that is directly based
on progressive meshes was developed by Hu et al. [HSH09].
They introduce a compact explicit dependency structure that
allows to group vertex splits and half-edge collapses into
parallel steps. The drawbacks of this technique are the ex-
plicit dependency that needs additional memory and that
only half-edge collapses are supported. In recent progressive
mesh representations the edge collapse operation with opti-
mized vertex position and attributes is used. The advantage
over the half-edge collapse is that it produces simplifications
with significantly higher quality and thus less triangles for a
given accuracy. In addition to that the rendering performance
is also degraded by using a single vertex array containing all
vertices and attributes of the original mesh.

3. Compact View-Dependent Progressive Mesh

Our view-dependent refinement algorithm is based on the
vertex hierarchy of progressive meshes [Hop97]. The con-
struction of the split hierarchy is unmodified, but instead of
directly using the quadric error for the LOD selection we
utilize the appearance error of Guthe et al. [GBBK04] to
support arbitrary vertex attributes, because it significantly
improves the visual quality at the cost of a slightly higher
primitive count. The progressive mesh is generated by sim-
plifying the original mesh to the base mesh with a series of
collapse operations. The original mesh can then be recon-
structed by applying the corresponding split operations in
reverse order. A view-dependent reconstruction can be gen-
erated by performing only those splits that are necessary for
the current view point. During this process the local order-
ing of operations needs to be preserved. This leads to the
dependency rules formulated by Hoppe [Hop97]:

• The ordering of operations applied to a single vertex must
be preserved.

• A split can only be applied if the next split operation of
each neighboring vertex was generated earlier during sim-
plification.

• Edge collapse operations are only legal if the next collapse
of each neighboring vertex was created later.

The first dependency rule can be efficiently encoded in a
forest of binary trees where the root nodes are the vertices
of the base mesh. Figure 1 shows an edge collapse operation
colv which removes the vertex vu and modifies v. The adja-
cent faces fl and fr of v and vu degenerate and are removed
from the mesh. The corresponding vertex split splv inverts
this operation. Accordingly the faces fl and fr are generated
when the vertex v is split into v and vu. In addition, some of
the faces adjacent to v become adjacent to the new vertex vu.

c© The Eurographics Association 2010.

E. Derzapf & N. Menzel & M. Guthe / Parallel View-Dependent Refinement of Compact Progressive Meshes

colv
fn5fn2 f

vu

f

fn1

fn2

fn4 fn1

fn5fn2

f
vl

vr
v vl

vr
v

fn0
fn3

frfl

fn0
fn3

fn1fn4

splv

fn0
fn6

fn0
fn6

Figure 1: Edge collapse and vertex split operation.

3.1. Tree Structure and Dependency Coding

The operations are stored in a one-dimensional array. The
tree structure could now be encoded by storing the indices i
of the left and right child for every node. This would however
require 8 bytes per operation, whereas a binary tree can be
encoded using only two bits per node with a succinct coding.
We only store if left and right child are present using a single
bit for each of them in a tree structure byte. We can then
calculate the indices il and ir from the current index i:

il = 2i+nr− skipi

ir = 2i+nr− skipi +1,

where skipi is the number of empty nodes up to the left child
and nr is the number of root nodes (i.e. base mesh vertices).
An example of the operation tree is shown in Figure 2. Un-
fortunately, calculating the current skipi requires parsing the
complete data structure up to the current node and counting
the number of zero bits. Instead of this, we could store the
skip count with every operation. This would again require
4.25 bytes per operation. A far more compact encoding with
equal computational complexity can be achieved by only
storing the skip for every n-th node. Then we could count the
number of zero bits from the last base skip. In our approach,
we completely avoid counting by encoding the difference
between skipi and the base skip. This difference is stored
the six remaining bits of the tree structure byte. In these six
bits we can encode numbers up to 63. Considering the fact
that skipi can be at most two larger than skipi−1, we need to
store the base skip for every 32nd node. This sums up to a
total of 1.125 bytes per node to encode the tree structure.

4/23/2

1/10/0 2/1

8/87/6

5/4

10/129/10

6/4

01/111/0 10/1 11/2 00/2 00/411/4 00/6 00/8 00/10 00/12

level 0 level 1 level 2

index/skip

children/skip offset

Figure 2: Compactly encoded forest of binary trees.

Unfortunately we cannot use the operation indices to pre-
serve the local ordering since the tree encoding has changed

their sequence. This necessitates to explicitly encode the
neighborhood dependency for each operation. A compact
encoding of this dependency can however be derived rather
simple: we start with the base mesh M0 and collect all oper-
ations that can be applied directly. After applying these, we
get the maximally refined next mesh M1. Repeating this pro-
cedure, we generate a series of meshes {M0,M1, . . . ,Mn},
where Mn is the original mesh. A split that refines Mi to Mi+1
is then defined as having a split level of i. The local ordering
is preserved if only splits with a lower split level than those
of the neighboring vertices are applied. The corresponding
condition for an edge collapse is simply that the split level is
less or equal for all vertices adjacent to v and vu. As the level
n of the original mesh is proportional to the logarithm of its
vertices, a single byte is sufficient to store the split level even
for models with several millions of triangles.

3.2. Topology Encoding

To efficiently encode which of the neighbor vertices are ad-
jacent to the new faces, we impose an ordering on the vertex
neighborhood. Then we can simply encode the vertices vl
and vr by their rank in this ordered sequence. The same ap-
plies to the partitioning of the neighbor faces into those that
are adjacent to vu after the split and those that remain adja-
cent to v. Here we can simply use a bit vector where an entry
is set to one of the v is replaced by vu for that face. Previous
approaches use a cyclic ordering that requires a neighbor-
hood graph. Instead, we assign a unique ID to every ver-
tex and face which remains constant over any modification
of the mesh. This allows for an efficient handling of vertex
and face orderings and enables the algorithm to support non-
manifold meshes. While the unique ID’s of base mesh ver-
tices and faces are simply their indices, we define the ID’s of
vertices and faces created by a split operation as follows:

IDvu = v0 + is
ID fl = f0 +2is
ID fr = f0 +2is +1,

where v0 and f0 are the number of vertices and faces in the
base mesh and is is the index of the split operation.

Since a split creates zero to two faces, we also need to
encode the case that fl or fr are not present. If both ranks
are encoded using four bits each, up to 15 neighboring ver-
tices can be handled within a single byte. When storing this
partitioning in two bytes, vertices with up to 16 neighbor-
ing faces are supported. The limitations to 15 neighboring
vertices and 16 faces do not impose significant restrictions
since the average valence in a triangle mesh is 6 and valences
above 15 are extremely rare. Nevertheless, the simplification
algorithm needs to adhere to these restrictions. If the original
mesh contains vertices with higher valence, they can not be
collapsed until enough adjacent vertices are removed.

c© The Eurographics Association 2010.

E. Derzapf & N. Menzel & M. Guthe / Parallel View-Dependent Refinement of Compact Progressive Meshes

3.3. Attribute Encoding

In addition to the connectivity, the new attributes (position,
normal, texture coordinates, etc.) of v and vu must also be
stored. Both of them are encoded as difference to the at-
tributes of v before the split. In contrast to previous ap-
proaches we do not use a linear quantization of the whole in-
put data but an individual one for each operation. This allows
to reduce the quantization error by inserting a dummy split
that does not change the connectivity. As the same quan-
tization is used for all attribute differences of the operation,
they must be scaled relatively to each other. Since the overall
quantization error needs to be minimized, the relative scale
factors should be as close as possible to the absolute differ-
ence values of all compression operations. This is achieved
by computing the mean absolute difference of each attribute
difference over all split operations. Then these norms are
used as scale factors. As the scaling is relative to the other
attributes, we can multiply all of them with an arbitrary fac-
tor. This factor is chosen such that the maximum absolute
difference is scaled to MAX_HALF in order to utilize the
complete range of values for the scaling of each operation.
This per operation scaling is a division by a factor s such that
the difference values are mapped into the interval [−1 . . .1].
The optimal scaling (the minimal s) is then stored as half pre-
cision floating point. Despite the adaptive scaling one differ-
ence is most of the time significantly larger than the others.
To accurately represent small and large values we apply a
cubic function before the final quantization to n bits. Given
a discrete value d ∈ [−1 . . .1], the quantized value q is:

q =
3
√

d(2n−1−1),

where n is the number of bits. The dequantization is:

d =
q3

2n−1−1

3.4. Refinement Criteria

Three view-dependent criteria determine whether a vertex
needs to be split or can be collapsed. A vertex can be col-
lapsed if it is either outside of the view frustum or its nor-
mal if facing away from the viewer. Since each vertex of
the adapted mesh represents several original vertices, there
exists no single normal. Instead, we encode the maximum
angular deviation α from the normal of the simplified ver-
tex. Given the view direction d = p−e

‖p−e‖ , where p and e are
the vertex and eye position, and the normal n, the vertex is
back-facing if:

n ·d > sinα

To save memory we do not store sinα as floating point value
but only a quantized value using four bits. During quantiza-
tion the ceiling is used such that the inaccuracy only leads
to back-facing vertices being classified as front-facing. Note
that even the quantization to four bits, as we use it in our im-
plementation, only marginally increases the number of ren-

dered triangles. The vertex can possibly be collapsed when
it is back-facing or outside the view frustum. Otherwise we
need to check the simplification error of the associated split
and collapse operations. The projected simplification error
εs of the vertices’ split operation s consists of the geomet-
ric distance γs and the attribute difference µs. The maximum
simplification error δs is then simply max(γs,µs). While the
attribute difference is equal for all view directions, the pro-
jected geometric error depends on the angle between n and
d. The squared projected error can now be written as:

ε
2
s =

((n ·d)µs)
2 +(||n×d||δs)

2

D2 ,

where D = ‖p− e‖ is the view distance. To efficiently store
the two simplification errors, we exploit the fact that δs is
more important as it dominates the projected error. So in-
stead of two floating point values, we only store δs as half
float and quantize the ratio λs =

µs
δs

using four bits. The ratio
and sinα are stored into a common byte. We then write the
projected error as follows:

ε
2
s =

((n ·d)λs)
2 + ||n×d||2

D2 δ
2
s

=
(n ·d)2(λ2

s −1)+1
D2 δ

2
s

If εs exceeds a given threshold the split operation has to be
applied. On the other hand, the vertex can be collapsed, if the
simplification error εc of its collapse operation c is below the
threshold. In the current implementation, we use tan 1

60
◦

as
threshold to guarantee that the difference is not perceived if
the projection matches the real-world view condition. Other
thresholds, e.g. 1

2 pixel screen space error, are also possible.

3.5. Dynamic Data Structures

The adaption algorithm maintains a static split tree storing
the split hierarchy as well as a dynamically updated Ver-
texBuffer, IndexBuffer, and some other temporary data. The
SplitTree contains both the topologic and the geometric in-
formation of the progressive mesh. The base mesh is only
used to initialize the dynamic data and thus not kept in mem-
ory. By using these data structures, the selectively refined
mesh can be rendered in real-time. Table 1 shows the static
and dynamic data structures in detail, which are required to
maintain the relevant buffers. Since the complete algorithm
runs on the GPU, the all data is stored in graphics memory.

The main data structures required for rendering are the
vertex buffer, which contains the position and attributes of
the adapted vertex and the index buffer that contains the con-
nectivity. Both are stored as vertex buffer objects (VBOs)
and are therefore separated from all other data. The neigh-
borhood information for the currently applied split opera-
tions is stored in the neighborhood array. It contains the
number of adjacent triangles and their indices for each ver-
tex that will be split. Since up to 16 neighbor triangles exist,

c© The Eurographics Association 2010.

E. Derzapf & N. Menzel & M. Guthe / Parallel View-Dependent Refinement of Compact Progressive Meshes

buffers elements memory (bytes)
static structures

operations

tree structure 1 1
8 n

dependency 1n
ref. criteria 3n
topology 3n

delta vectors
quant. delta 2kn
delta scale 2n

dynamic structures

active faces
index VBO 24m
triangle ID 8m

active vertices

vertex VBO 4km
vertex ID 4m
next split 4m
next collapse 4m
state vstate 1m

collapse tree
split index ic 4m
prev collapse 4m
vertex vu 4m

temporary prefix sum 24m

neighborhood
size 1m
triangle index 16m

total (10 1
8 +2k)n+(98+4k)m

Table 1: Elements of the data structure. k, n, and m are the
number of attributes, original, and base mesh vertices.

we need 68 bytes per split. As only a quarter of the vertices
can be split in parallel, this translates to 17 bytes per active
vertex. For each active vertex v, the algorithm additionally
stores its state, the unique ID and the next split and collapse
operation. As the tree structure of the progressive mesh is
only stored from root towards the leaves, the upwards ref-
erences are kept in the dynamically updated collapse tree.
Its elements consist of the index of the corresponding split
operation is, a reference to the previous collapse, and a ref-
erence to the vertex vu that is removed by this operation. In
addition, each active vertex v holds a reference to the corre-
sponding entry in the collapse tree. The complete structure
is shown in Figure 3. In addition, three temporary buffers are
required for the compactions: one for the scan input, one for
the output and one temporary buffer [SHZO07]. Each buffer

nil

M
0

Base Mesh

M

Active Mesh

v

nil

prev.

collapse

collapse

i
s

collapse operation (i
c
)

v
u

...

... ...

... ...

Figure 3: Linking between active vertices, the SplitTree, and
the CollapseTree.

contains four bytes per entry and the maximum number of
entries is the number of triangles in the current mesh which
is twice the number of vertices.

Most other algorithms support meshes with k = 8 at-
tributes only consisting of position, normal, and 2d tex-
ture coordinates. With k = 8 the complete hierarchy and
adapted mesh use a total of 26 1

8 n+130m bytes, where n and
m are the numbers of vertices in the original and adapted
meshes respectively. Table 2 shows a comparison with pre-
vious view-dependent LOD schemes. As for highly detailed
models, it is generally impossible to view the whole sur-
face at high resolution within a single frame, one can assume
that m << n. Therefore, the requirements for the static data
structures that are the only depending on n are more impor-
tant than the ones of the dynamic structures. With only 26 1

8 n
our proposed data structure favorably compares to all other
view-dependent methods with at least a reduction of 62%,
so roughly a third of the memory.

View-Dependent LOD scheme Memory size (bytes)
VDPM [Hop97] 216n
SVDLOD [Hop98] 88n+100m
MT [DFMP98] 75n
VDT [ESV99] 90n
FastMesh [PD04] 88n+6m
PVDPM [HSH09] 69n+56m
Our scheme 26 1

8 n+130m

Table 2: Comparison of memory size with previous schemes
for k = 8 attributes.

Compared to the 129 bits per vertex (bpv) we need, the
compressed progressive meshes of Hoppe [Hop96] and Pa-
jarola and Rossignac [PR00] require 31–50 and 21–28 bpv
only. The drawback of those is that both use variable length
coding which is not suitable for efficient random access de-
compression. Therefore, their approaches cannot be used for
selective parallel LOD adaption. In addition, [PR00] does
not support view-dependent refinement at all.

4. Runtime Algorithm

In order to efficiently exploit the parallel architecture of the
Compute Unified Device Architecture (CUDA), the algo-
rithm is subdivided into several steps, that are performed for
each parallel adaption. The partitioning is chosen such that
each step can be processed completely in parallel. To clas-
sify which operation can or should be applied to a vertex, we
track those options in a status byte vstate. Two bit flags, po-
tential_split and potential_collapse, are used to mark those
vertices that can possibly be split and/or collapsed. If their
neighborhood prevents any of these operations, the accord-
ing bit is cleared. The operation that should be applied to
the vertex is stored in two other bit flags, want_split and
want_collapse. A combination with the corresponding po-
tential flags marks a vertex for a split or collapse operation.

c© The Eurographics Association 2010.

E. Derzapf & N. Menzel & M. Guthe / Parallel View-Dependent Refinement of Compact Progressive Meshes

In addition, a vertex can have one of the following two spe-
cial states after a collapse operation: the vertex that was re-
moved is labeled with the removed state and the other one is
marked as collapsed. The state is stored in a separate array to
facilitate coalesced reading and writing since it is accessed
very often. Based on these states, split and collapse opera-
tions are applied.

4.1. Vertex State Update

If the refinement criteria determine that vertex v needs to be
split, we set the want_split flag in its state. Otherwise, we
set the want_collapse flag if the refinement criteria allow a
collapse and the vertex is marked as potential_collapse. In
all other cases no operation is required for v, unless it was
already marked as want_split in a previous iteration. In both
of these cases the state remains unchanged. After we have
determined the desired operation for each vertex, we need to
check if both vertices of a collapse operation are marked for
coarsening. If only one of them is marked, the want_collapse
flag is removed again. Note that since we check for impos-
sible operations later, this step is not strictly necessary but
leads to a considerable speedup.

Due to the dependency of split operations we may have
marked vertices for split or collapse operations that cannot
be performed. In case of a collapse this is not problematic
since the operation is not necessary to achieve a desired
quality. For a split operation however, we need to find those
neighboring vertices that must be split before the current
vertex v. For this purpose, each face f is checked whether
one of its vertices is marked as want_split but another ver-
tex of the same face has a lower split level. If this vertex is
not already marked for splitting as well, its want_split flag
also needs to be set. The procedure is performed twice since
only the neighboring dependent splits are marked each time.
This way, every dependent split with a topological distance
of dt is marked after at most dt

2 adaption iterations. To re-
move splits and collapses that cannot be performed yet, the
algorithm traverses all triangles and again checks the ver-
tex states. For the split operations, only the vertex with the
lowest split level can be split in each face f . In addition,
if any vertex is marked for splitting, no vertex of f can be
collapsed. If no vertex of the face needs to be split, we fi-
nally check the collapse operations. Here only the collapse
operation with the highest level can be performed in each
triangle. Note that we do not change the corresponding want
flags, but the potential flags to prevent repeated checking of
the same vertices. Algorithm 1 shows the complete vertex
update partitioned into the four stages described above.

When processing large amounts of data on the GPU the
aligned memory access of each thread group (warp) is cru-
cial for performance. This access pattern is called coalesced
reading and writing. When looping over all faces, we need
the three vertex indices of each face but directly loading
them from global memory would violate coalescing. To pre-

foreach vertex v in parallel do
if marked(v, collapsed)

mark(v, potential_split, potential_collapse)
if need_split(v)

mark(v, want_split)
elif may_collapse(v) && marked(v, potential_collapse)

mark(v, want_collapse)
foreach vertex v in parallel do

vu = get_other(v)
if v! = vu

if !marked(vu, want_collapse)
unmark(v, want_collapse)

if !marked(v, want_collapse)
unmark(vu, want_collapse)

repeat twice
foreach face f in parallel do

if any_vertex_marked(f , want_split)
levelmax = get_max_active_split_level(f)
mark_dependent_splits(f , levelmax, want_split)

foreach face f in parallel do
if any_vertex_marked(f , split)

levelmin = get_min_active_split_level(f)
unmark_dependent_splits(f , levelmin)

if any_vertex_marked(f , want_split)
unmark_all_collapses(f)

elif any_vertex_marked(f , collapse)
levelmax = get_max_active_collapse_level(f)
unmark_illegal_collapses(f , levelmax)

Algorithm 1: The four parallel stages to update the vertex
states. The third stage is performed twice to speed up the
propagation of dependent splits through the mesh.

vent this, we read all vertex indices of a thread block into its
shared local memory and then fetch the indices of the current
triangle from there.

4.2. Parallel Vertex Splits

After updating the state of all active vertices and removing il-
legal splits and collapses, the operations can be applied. Be-
fore the splits can be performed, the neighborhood of each
split vertex needs to be known. The neighborhood informa-
tion is collected by traversing all faces and if a face f is
adjacent to a split sv, the face index is added to the neigh-
borhood of v. As we only want to collect the neighborhood
for the vertices that are currently split, we have to first per-
form a so-called compaction operation on the split indices.
For this purpose, we use the parallel compaction algorithm
of Sengupta et al. [SHZO07] to compute an array of split
indices. After generating this array and collecting the face
neighbors for each split vertex v, the following operations
are performed:

1. The new vertex vu is generated and v is moved to it’s new
position.

2. The two faces fl and fr are added to the index buffer and
the triangle ID array.

3. The other faces in the neighborhood of v are relinked ac-
cording to the encoded topology changes.

c© The Eurographics Association 2010.

E. Derzapf & N. Menzel & M. Guthe / Parallel View-Dependent Refinement of Compact Progressive Meshes

4. The adjacent vertices of v and vu are marked as poten-
tial_split as their split could be waiting for the current
one. As the adjacent vertices cannot be collapsed, the po-
tential_collapse flag is cleared.

5. v and vu are marked as potential_split and poten-
tial_collapse since both operations could be possible in
the next frame.

Algorithm 2 gives an overview of the complete parallel ver-
tex split procedure.

compact(splits)
foreach face f in parallel do

if adjacent_to_split(f)
append_to_neighborhoods(f)

foreach split sv in parallel do
split_vertex(v)
add_faces(v)
relink_neighbor_faces(v)
mark_neighbor_vertices(v, potential_split)

Algorithm 2: Parallel vertex split algorithm.

As the neighborhood information is parsed identically for
every split vertex, we achieve coalesced reading with the fol-
lowing layout: First, we store the number of adjacent faces,
then the indices of the first neighbor triangle, than that of the
second and so on. In addition to this layout, we must assure
that each new block of indices begins at an address that is a
multiple of 128. Therefore, we round up the number of splits
to the next multiple of 32 for addressing in the neighborhood
array.

4.3. Parallel Edge Collapses

To perform the collapse cv, the corresponding vertex vu is
required. Since vu is stored with the collapse operation, we
simply need to check whether the current vertex is different.
The collapse is only applied if both are marked as collapse.
The operation cv marks vertex vu as removed, moves v to the
target position and marks it as collapsed. In addition, the tar-
get vertex for vu is stored in the next split since this is not
required any more after removing vu. Then all faces are re-
linked by checking if a vertex of face f was removed. In this

foreach vertex v in parallel do
if marked(v, collapse)

vu = get_other(v)
if v! = vu && marked(vu, collapse)

collapse_vertices(v, vu)
foreach face f in parallel do

relink_vertices(f)
if degenerate(f)

remove_face(f)
else if changed(f)

mark_vertices(f , potential_collapse)

Algorithm 3: Parallel edge collapse algorithm.

case, the target vertex is fetched and the vertex of the face
is set accordingly. If the face becomes degenerated it is re-
moved as well. When a collapse was applied to one vertex of
the face, all other vertices are candidates for a possible col-
lapse and are marked as such. Algorithm 3 shows the parallel
processing of the edge collapse operations.

4.4. Buffer Compaction

The final step of the adaption is the compaction of buffers
where elements have been removed. These buffers are the
active vertices (including the vertex VBO), active faces (with
the index VBO), and collapse operations. Note that when
compacting the vertices or collapses, the references to them
must be updated accordingly. While the compaction of the
faces and thus the indices is mandatory since the index VBO
is used for rendering, the compaction of the vertices and col-
lapse operations is not. The latter two only need to be com-
pacted every few frames to prevent bloating of the buffers.
As only a few elements are removed each time and the order-
ing does not need to be preserved, we have developed a spe-
cialized in-place compaction algorithm. In contrast to previ-
ous approaches, it has the advantage that we do not need to
duplicate the array that is compacted. Otherwise we would
need copies of all dynamic data structures except the tempo-
rary buffers and the neighborhood information which would
drastically increase the memory consumption.

elements 0 1 2 3 4 5 6 7 8 9 10 11 12 13

valid y y n y n y y n y y n n y y

flag 1 1 0 1 0 1 1 0 1 1 0 0 1 1

sum 0 1 2 2 3 3 4 5 5 6 7 7 7 8 9

i – sum 0 0 0 1 1 2 2 2 3 3 3 4 5 5 5

free pos. 2 4 7

compacted 0 1 9 3 12 5 6 13 8

size after compaction
num. used

first moved

Figure 4: Basic principle of our in-place compaction algo-
rithm.

The main idea of the compaction is to first calculate the
number nc of elements after the compaction. Then all gaps
before nc are filled with elements after nc (see Figure 4).
First the valid elements are marked with one and the invalid
ones with zero. Then we compute the prefix sum using the
parallel algorithm of Sengupta et al. [SHZO07]. This gives
us the number of valid elements nc as well as the first valid
element that needs to be moved. We then gather the positions
of the empty elements in the final array. Their position in the
free position array can be computed by subtracting the prefix
sum from their index. Finally we can compute the target po-
sition of the elements that need to be moved by subtracting
the first moved from the prefix sum of the current element.
We then look up the position in the free position array and
can copy the element into the compacted buffer. The algo-
rithm does not require additional temporary memory except
that used to compute the prefix sum. The free positions can

c© The Eurographics Association 2010.

E. Derzapf & N. Menzel & M. Guthe / Parallel View-Dependent Refinement of Compact Progressive Meshes

overwrite the flag array, since the flags are not required any-
more after computing the sums.

4.5. Memory Management

During adaption the memory requirements of the dynamic
data structures can grow or shrink. To alleviate the cost for
memory allocation and copy when the size of an array is
modified, we always reserve more memory than currently
required. In addition, the array size is restricted to multi-
ples of 4096 elements. Figure 5 shows an example of grow-
ing and shrinking a data structure. If the currently required
amount of memory exceeds the array size, we allocate one
additional block to prevent re-allocation in the next frame.
For shrinking a similar strategy is employed by only allocat-
ing a smaller array if more than two blocks are empty. De-
spite reducing the memory consumption, we still keep one
free block to prevent quick re-allocation when the array is
growing again.

Growing Shrinking

required

memory

available

memory

Figure 5: Growing (left) and shrinking (right) of an allo-
cated array during adaption.

To improve the rendering performance, the triangles are
sorted such that the transform cache can be utilized. As the
ordering is gradually destroyed when inserting new faces at
the end of the buffer, we need to restore it every few frames.
Since the memory consumption also changes when many
operations are applied, we simply integrate the sorting into
the memory management. When a new buffer is allocated for
the index VBO and the face IDs, we sort the triangles by their
minimum index during the copy operation. This results in a
mesh that is mainly composed of triangle fans and reduces
the transform cost by a factor between of two to three. In to-
tal, the rendering time is reduced by 20% to 50% depending
on the complexity of the fragment shader. If no allocation
occured for more than two seconds, we force a re-allocation
and thus a sorting of the faces. This is necessary as gradual
movements do not quickly enough lead to changes in mem-
ory consumption but nevertheless perturb the ordering.

5. Results

Our test system is built of a 3 GHz Intel Core2 Duo CPU
with 2 GByte of main memory and a GeForce GTX 285
where we use the OpenGL API for rendering. We first evalu-
ate the memory requirements of the static progressive mesh
data structure. Table 3 gives an overview of the progressive
meshes we used as input and the number of added dummy
split operations.

model v0 f0 k # ops. # dummy ops. lvl.
Phl. Dragon 41 44 14 240,016 6,099 (2.54%) 142
St. Dragon 815 536 6 436,830 3,215 (0.74%) 207
Buddha 727 1866 6 542,925 3,529 (0.65%) 135
Manuscript 42 17 10 2,155,575 3,369 (0.16%) 191
Asian Dragon 35 16 6 3,609,565 7,801 (0.22%) 253

Table 3: Progressive meshes used as input, number of added
dummy split operations, and maximum split level.

With the exception of the Phlegmatic Dragon, the number
of dummy splits is significantly below 1% of the original
number of operations. But fortunately, the compression ratio
of this model will increase again as it has the highest num-
ber of attributes k as tangents and texture coordinates are re-
quired to map a BTF on the model. All other models except
the manuscript, which additionally stores per vertex color,
only use position and normal as vertex attributes. The maxi-
mum split level is proportional to the logarithm of the ratio of
original to base mesh vertices. Therefore, larger models can
be handled by increasing the complexity of the base mesh.
The resulting compressed sizes, compared to an indexed face
set that is traditionally stored on the GPU for rendering, are
listed in Table 4. As expected, the models with higher num-
ber of attributes are slightly less compressed by our method.
Nevertheless, the memory reduction is relatively similar for
all models. The memory consumption lies between 46% and
50% compared to an indexed face set.

model vmax fmax mem. IFS mem. PM
Phl. Dragon 240,057 480,076 18.3MB 9.0MB (49.2%)
St. Dragon 437,645 871,414 19.9MB 9.3MB (46.5%)
Buddha 543,652 1,087,716 24.9MB 11.5MB (46.2%)
Manuscript 2,152,840 4,305,679 123.3MB 57.9MB (47.0%)
Asian Dragon 3,609,455 7,218,906 165.2MB 76.1MB (46.1%)

Table 4: Comparison of the static data that resides in graph-
ics memory compared to an indexed face set.

During rendering, the dynamic data structures consume
additional memory. For all models except the phlegmatic
dragon, the total amount of graphics memory nevertheless
stays below that of an indexed face set. Table 5 shows the
number of rendered faces, the total rendering time, and the
memory consumption for the views shown in Figure 6. For
almost all models the required memory and total frame time

model rendered memory total frame
faces (MB) time (ms)

Phl. Dragon 224,090 (46.7%) 24.1 (129.1%) 10.4 (131.4%)
St. Dragon 190,236 (21.8%) 19.1 (93.3%) 3.2 (95.8%)
Buddha 152,716 (14.0%) 19.5 (78.1%) 3.3 (68.7%)
Manuscript 274,678 (6.4%) 73.5 (59.6%) 4.5 (39.8%)
Asian Dragon 646,844 (9.0%) 108.9 (65.9%) 10.5 (41.2%)

Table 5: Memory consumption and total rendering time of
the different models. The ratio compared to rendering an in-
dexed face set of the original model is shown in parenthesis.

c© The Eurographics Association 2010.

E. Derzapf & N. Menzel & M. Guthe / Parallel View-Dependent Refinement of Compact Progressive Meshes

are always less than that of the original mesh. The coars-
ening on the back faces and outside the view frustum can
be clearly seen in the external views of the adapted models.
The reduced level-of-detail further away from the camera
can also be noticed at the example of the Asian Dragon.

Figure 6: Renderings of view-dependently refined meshes.
The images on the right show external views with the view
frustum in yellow. The color coding depicts the level of de-
tail, where red is low LOD and green high.

Figure 7 shows the adaption and rendering time together
with the memory consumption for a pre-recorded movement
around the Asian Dragon. The consumed graphics mem-
ory is always less than required by the original model. The
frame rate seldomly drops below the 60 Hz of the display
even when a high number of triangles is required. As the
time required for each frame is often significantly below
16 ms, we could even perform more than one adaption iter-
ation and only render once. Compared to static hierarchical
LODs (HLODs) using the same error measure [GBBK04],
the number of primitives is reduced by a factor of 3 to 5 and
the frame rate improves by a factor between two and three.
A special problem of HLODs is that rendering is split into
several independent render calls which reduces the number
of primitives per second compared to a single mesh.

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500

Frame

m
s

0

20

40

60

80

100

120

140

160

180

M
B

Adaption time (ms)

Total time (ms)

Memory (MB)

IFS memory (MB)

Figure 7: Timings and memory consumption for the Asian
dragon with a pre-recorded camera path.

Figure 8 shows a detailed analysis of the runtime of each
step of the adaption and rendering. Note that the rendering
performance is identical to rendering a static model with the
same number of triangles and thus our method needs ap-
proximately 2.6 times as long as rendering a static mesh.
Considering that we already cut down the vertices by half
due to the simplification of back faces, we can conclude
that our method will almost always be faster than render-
ing an indexed face set of the original model. While this
even holds for rather coarse models, the performance gain
increases with the complexity of the original mesh. Due to
the time required for the pixel shaders, the speedup is of
course not linear with the reduction. On average we can pro-
cess 120 million triangles per second (M4/sec). This is a
speedup of factor 9.2 compared to the approach of Hoppe et
al. [HSH09] that only achieves 13 M4/sec on our test sys-
tem. The main source of speedup is probably due to the fact
that we use a single CUDA compaction instead of several
geometry shaders to construct a compact indexed buffer for
rendering. In addition, rendering the adapted mesh is also
approximately twice as fast using our approach due to the

Update State

Apply Splits

Figure 8: Time per frame partition for the serveral steps of
our algorithm and for map-/unmap as well as rendering.

c© The Eurographics Association 2010.

E. Derzapf & N. Menzel & M. Guthe / Parallel View-Dependent Refinement of Compact Progressive Meshes

compact vertex buffer. Due to ther stronger neighborhood
contraints our method however requires thrice the number
of iterations to reach the specified LOD than the method of
Hoppe et al. [HSH09]. Since on the other hand each iteration
is more than nine times faster, our method still converges in a
third of the time. Nevertheless, popping artifacts are still vis-
ible during a fast pan over the model which can be observed
in the accompanying video. Note that the relatively large
amount of time required for memory management could be
reduced by using larger blocks during allocation. This would
on the other hand increase the amount of memory used up by
the dynamic data structures.

Even with most recent graphics drivers approximately
25% of additional rendering time is required for the map-
ping and unmapping of the index and vertex buffer for ac-
cess from CUDA. According to the documentation the time
for mapping should be insignificant if the device is set to
OpenGL interoperability. As we have observed no difference
between activating OpenGL interoperability or not, we con-
sider this to be a driver problem and did not include this time
in our results. This is also one of the reasons for the rather
large share of the memory managemant as allocating a new
VBO requires unmapping the old and mapping the new one.

6. Conclusion and Limitations

We have presented a compressed progressive mesh represen-
tation that was specifically developed for parallel refinement
on modern graphics hardware. By performing all currently
possible adaptions in parallel, we only need 1.6 times as
long as for rendering of the adapted mesh. In total we need
2.6 times as long as for rendering alone. This means that
the performance is increased as soon as 62% of the vertices
are removed by simplification. Due to the view-dependent
adaption, this reduction is almost achieved by coarsening
the back faces alone. Compared to prevoius parallel view-
dependent refinement algorithms we achieve an almost ten-
fold performance improvement. Our algorithm even outper-
forms hierarchical LODs that were considered near-optimal
for current graphics hardware by a factor of more than two.

In addition to the improved performance, our method also
requires even less graphics memory than the original model
stored as indexed face set. For larger models, approximately
30% to 40% are saved on average while other algorithms
need more memory than the original model.

One limitation of our algorithm is that despite sorting the
triangle into fans to utilize the vertex cache, an additional
memory reduction would be possible by using a general-
ized triangle strip. Another, probably more severe limitation
is that some splits are postponed several frames as they are
waiting for others to be applied before them. Although this
is only problematic for fast panning over the model, a less
restrictive dependency scheme would be desirable.

References
[DFMP98] DE FLORIANI L., MAGILLO P., PUPPO E.: Efficient

implementation of multi-triangulations. In VIS ’98: Proceedings
of the conference on Visualization ’98 (Los Alamitos, CA, USA,
1998), IEEE Computer Society Press, pp. 43–50.

[DT07] DECORO C., TATARCHUK N.: Real-time mesh simplifi-
cation using the gpu. In I3D ’07: Proceedings of the 2007 sym-
posium on Interactive 3D graphics and games (New York, NY,
USA, 2007), ACM, pp. 161–166.

[ESV99] EL-SANA J., VARSHNEY A.: Generalized view-
dependent simplification. Computer Graphics Forum 18, 3
(1999), 83–94.

[GBBK04] GUTHE M., BORODIN P., BALÁZS Á., KLEIN R.:
Real-time appearance preserving out-of-core rendering with
shadows. In Rendering Techniques 2004 (Proceedings of Eu-
rographics Symposium on Rendering) (June 2004), Keller A.,
Jensen H. W., (Eds.), Eurographics Association, pp. 69–79 +
409.

[GH97] GARLAND M., HECKBERT P. S.: Surface simplifi-
cation using quadric error metrics. In SIGGRAPH ’97: Pro-
ceedings of the 24th annual conference on Computer graphics
and interactive techniques (New York, NY, USA, 1997), ACM
Press/Addison-Wesley Publishing Co., pp. 209–216.

[Hop96] HOPPE H.: Progressive meshes. In SIGGRAPH ’96:
Proceedings of the 23rd annual conference on Computer graph-
ics and interactive techniques (New York, NY, USA, 1996),
ACM, pp. 99–108.

[Hop97] HOPPE H.: View-dependent refinement of progressive
meshes. In SIGGRAPH ’97: Proceedings of the 24th annual con-
ference on Computer graphics and interactive techniques (New
York, NY, USA, 1997), ACM Press/Addison-Wesley Publishing
Co., pp. 189–198.

[Hop98] HOPPE H.: Efficient implementation of progressive
meshes. Computers & Graphics 22, 1 (1998), 27–36.

[HSH09] HU L., SANDER P. V., HOPPE H.: Parallel view-
dependent refinement of progressive meshes. In I3D ’09: Pro-
ceedings of the 2009 symposium on Interactive 3D graphics and
games (New York, NY, USA, 2009), ACM, pp. 169–176.

[JWLL06] JI J., WU E., LI S., LIU X.: View-dependent refine-
ment of multiresolution meshes using programmable graphics
hardware. Vis. Comput. 22, 6 (2006), 424–433.

[Paj01] PAJAROLA R.: Fastmesh: Efficient view-dependent mesh-
ing. Computer Graphics and Applications, Pacific Conference on
0 (2001), 0022.

[PD04] PAJAROLA R., DECORO C.: Efficient implementation of
real-time view-dependent multiresolution meshing. IEEE Trans-
actions on Visualization and Computer Graphics 10, 3 (2004),
353–368.

[PR00] PAJAROLA R., ROSSIGNAC J.: Compressed progres-
sive meshes. IEEE Transactions on Visualization and Computer
Graphics 6, 1 (2000), 79–93.

[SHZO07] SENGUPTA S., HARRIS M., ZHANG Y., OWENS
J. D.: Scan primitives for gpu computing. In Graphics Hard-
ware 2007 (Aug. 2007), ACM, pp. 97–106.

[SM06] SANDER P. V., MITCHELL J. L.: Progressive buffers:
view-dependent geometry and texture lod rendering. In SIG-
GRAPH ’06: ACM SIGGRAPH 2006 Courses (New York, NY,
USA, 2006), ACM, pp. 1–18.

[XV96] XIA J. C., VARSHNEY A.: Dynamic view-dependent
simplification for polygonal models. In VIS ’96: Proceedings
of the 7th conference on Visualization ’96 (Los Alamitos, CA,
USA, 1996), IEEE Computer Society Press, pp. 327–ff.

c© The Eurographics Association 2010.

